

Towards Enabling Exascale Simulation:

SLAC CS/AM Activities for Parallel Finite-Element Electromagnetic Computations

Lie-Quan Lee, Volkan Akcelik, Arno Candel, Lixin Ge and Greg Schussman

Advanced Computations Department SLAC National Accelerator Laboratory

The Role of Computational Science

SciDAC Accelerator Projects

Solve the most challenging computational problems in accelerator design, optimization and analysis

CS/AM advances supported by CETs and SAP enable **better** and **bigger** simulation

LHC/LARP, Project-X,
SuperB, ILC, LCLS, PEP-X,
CLIC, Muon Collider,
SRF cavities,
High-gradient R&D

Accelerator Science & Development

Shape optimization
Uncertainty quantification
Adaptive refinement
Dynamic load balancing
Visualization

Computational Science

Overview

- Uncertainty Quantification of Cavity Shape (TOPS)
 - CEBAF superconducting cavity
- ☐ Shape Optimization for Accelerating Cavity (TOPS)
 - Choke cavity for high-gradient concept
- ☐ Parallel Domain Specific Linear Solvers (TOPS, CScADS)
 - Linear solvers for saddle-point problems
 - Scalable multilevel preconditioner
 - Out-of-core sparse linear solver
- Novel Algorithms for Solving Large-scale Nonlinear Eigenvalue Problems (NEP) (TOPS, UCDavis)
- ☐ Parallel Adaptive Refinement (ITAPS)
- Dynamic Load Balancing (CSCAPES, ITAPS)
- Visualization (IUSV)

Each item can be expanded to a full talk!

Uncertainty Quantification of Accelerator Cavity Shape

SLAC

Uncertainty Quantification (UQ) of Cavity Shape

Solve an inverse problem to determine the deformed cavity shape

- ☐ Use measured rf parameters such as f, Q_{ext}, and field profile as inputs
- ☐ Parameterize shape deviations using pre-defined geometry variations
- □ Objective (function J) minimize weighted least square misfit of the computed and measured responses (f, Q_{ext} and field)

$$\begin{array}{ll} \underset{\mathbf{e}_{j},k_{j},\mathbf{d}}{\text{minimize}} & \sum_{i}\alpha\left(f_{i}-\bar{f}_{i}\right)^{2}+\sum_{i}\beta\left(Q_{i}-\bar{Q}_{i}\right)^{2}\\ \text{subject to} & \mathbf{K}\mathbf{e}_{j}+ik_{j}\mathbf{W}\mathbf{e}_{j}-k_{j}^{2}\mathbf{M}\mathbf{e}_{j}=\mathbf{0}\\ & \mathbf{e}_{j}^{T}\mathbf{M}\mathbf{e}_{j}=\mathbf{1} \end{array}$$

- ☐ Regularization or truncated SVD employed to deal with noisy data
- ☐ The optimization procedure typically converges within a handful of nonlinear iterations with Newton type algorithms

Ref: V. Akcelik et al., "Shape Determination for Deformed Electromagnetic Cavities", J. Comput. Phys., **227**, 1722 (2008).

UQ for CEBAF BBU: Simulation & Analysis

Shape Optimization for Cavity Design

Design of Choke Cavity

Design goals:

- Set accelerating mode frequency to 11.424 GHz.
- ☐ Satisfy field flatness for the accelerating mode.
- Maximize external Q for the accelerating mode.
- Minimize external Q value for the higher order modes (HOM).
- Constrain the voltage for the accelerating mode.

Shape parameters:

- Design variables are CAD parameters.
- 21 design parameters, 7 middle cells need to be identical.
- Design parameters have simple bounds.

Example of non-optimized cavity: accelerating mode leaks through choke

Shape Optimization for Choke Cavity

Optimization Problem:

$$\underset{\mathbf{e}_{j},k_{j},\mathbf{d}}{\mathsf{minimize}}$$

$$-\beta Q_a + \alpha \sum_{i=1}^{n} Q_{HOM} + \gamma \sum_{i=1}^{n} (|\mathbf{e}(\mathbf{x}_i) - |\bar{\mathbf{e}}|)^2 - \delta V_a$$

subject to

$$\mathbf{K}\mathbf{e}_j + ik_j \mathbf{W} e_j - k_j^2 \mathbf{M} \mathbf{e}_j = \mathbf{0}$$

$$\mathbf{e}_{j}^{T}\mathbf{M}\mathbf{e}_{j}=1$$

$$f_a = 11.424e9$$

$$l_i \le d_i \le u_i$$

Resulting Shape:

Optimized parameters in μm						
Cell 1						
r1	r2	r3	r4	z1	z2	z3
117.3	-727.7	-74.9	-27.34	349	186.1	743.9
Cell 2-8						
r1	r2	r3	r4	z1	z2	z3
604.5	-1754.8	1178.1	-135.3	1800	651.5	36.1
Cell 9						
r1	r2	r3	r4	z1	z2	z3
15.6	-238.4	-42.7	32.3	744	96.2	-347.5

Design Parameters

Movie for Choke Cavity Design

Domain Specific Scalable Linear Solver

Linear Solver for Saddle-point Problems

 Solving linear systems from Karush-Kuhn-Tucker (KKT) condition is one of the keys in solving shape optimization and uncertainty quantification

$$\begin{pmatrix} \mathbf{K} - \lambda \mathbf{M} & \mathbf{M} \mathbf{v} \\ (\mathbf{M} \mathbf{v})^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{t} \\ \xi \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{0} \end{pmatrix}$$

- It is highly indefinite both (1,1) and (2,2) block are singular: (λ, v) satisfies $Kv = \lambda Mv$
- Direct algorithm
 - A sparse direct solver is applied to (0,0) block
 - Null space is removed through orthogonalization
- Iterative algorithm for $(K-\lambda M)$ t = b ξ Mv
 - Remove null space from solution of precondtioning system

Multilevel Preconditioner

- Matrices from high-order finite-element simulation can be partitioned into two-by-two blocks
- A multilevel preconditioner: A₁₁ can factorized while A₂₂ can be approximated (IPDPS05 and CSE07)
- Advantage: convergence is independent of mesh size

Problem: A₁₁ is too small and scalability of factorization

and triangular solver are bad

Solution: (next page)

Scalable Implementation of Multilevel Preconditioner

$$\mathbf{A} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

New Implementation highlights:

- A₁₁ is factorized and solved with a subset of MPI processors with threading
 - Triangular solver of factorized A₁₁ uses much less wall clock time!
- A₂₂ is approximated with incomplete LU factorization with all processors
- Coupling terms makes solver converges fasters

More scalable solver:

- Speed: much less overall wall clock time
- Memory usage: problems cannot be solved on NERSC bassi (per-node memory 32GB) before can be solved on NERSC franklin (per-node memory 8GB) now

Exploring Out-of-Core Solver

- Available amount of memory limits us to use sparse direct solver for larger problem-size
- Out-of-core techniques save the matrix factor into disk and use it in triangular solver
- MUMPS out-of-core solver has been integrated into Omega3P
- Example: Solving ILC TDR cavity with couplers for first monopole bands
 - ➤ 531k tetrahedral elements, 2nd order finite element bases, 3.1 million DOFs, 4 cores AMD Opteron Processor, 6 hours wall clock time
 - ➤ As a comparison, same problem, on NERSC bassi with 64 CPUs and 256GB memory, 10 minutes
 - ➤ Out-of-core solver will solve larger problem-size by using disk space as temporary memory, but it trades off the execution time

The ILD TDR cavity with coupler, used in testing out-of-core solver

Novel Algorithm for Nonlinear Eigenvalue Problems

Nonlinear Eigenvalue Problems (NEP) in Accelerator Cavity Simulation

Cavity loaded with multiple waveguide modes

Waveguide BC

Waveguide BC

$$P(\vec{\mathbf{E}}) = \sum_{m}^{\infty} \sum_{n}^{\infty} \frac{k^{2}}{i\sqrt{k^{2}-k_{mn}^{2}}} \vec{\mathbf{e}}_{tmn}^{TM} \int_{\Gamma} \vec{\mathbf{e}}_{tmn}^{TM} \cdot \vec{\mathbf{E}} \ d\Gamma - \sum_{m}^{\infty} \sum_{n}^{\infty} i\sqrt{k^{2}-k_{mn}^{2}} \vec{\mathbf{e}}_{mn}^{TE} \int_{\Gamma} \vec{\mathbf{e}}_{mn}^{TE} \cdot \vec{\mathbf{E}} \ d\Gamma$$

■ Vector wave equation with waveguide boundary conditions can be modeled by a nonlinear eigenvalue problem

$$\begin{aligned} \mathbf{K}x + i \sum_{m,n} \sqrt{k^2 - k_{mn}^2} \mathbf{W}_{mn}^{TE} x + i \sum_{m,n} \frac{k^2}{\sqrt{k^2 - k_{mn}^2}} \mathbf{W}_{mn}^{TM} x = k^2 \mathbf{M}x \\ \text{where} \qquad & (\mathbf{W}_{mn}^{TE})_{ij} = \int_{\Gamma} \vec{\mathbf{e}}_{mn}^{TE} \cdot \mathbf{N}_i \ d\Gamma \int_{\Gamma} \vec{\mathbf{e}}_{mn}^{TE} \cdot \mathbf{N}_j \ d\Gamma \\ & (\mathbf{W}_{mn}^{TM})_{ij} = \int_{\Gamma} \vec{\mathbf{e}}_{tmn}^{TM} \cdot \mathbf{N}_i \ d\Gamma \int_{\Gamma} \vec{\mathbf{e}}_{tmn}^{TM} \cdot \mathbf{N}_j \ d\Gamma \end{aligned}$$

Novel Algorithm for NEP

$$\mathbf{K}x+i\sum\limits_{m,n}\sqrt{k^2-k_{mn}^2}\mathbf{W}_{mn}^{TE}x+i\sum\limits_{m,n}\frac{k^2}{\sqrt{k^2-k_{mn}^2}}\mathbf{W}_{mn}^{TM}x=k^2\mathbf{M}x$$

- Nonlinear Jacobi-Davidson algorithm and Self-Consistent Iterations are two primary algorithms for NEP
 - Eigenvectors are not orthogonal
- New algorithm developed by Z. Bai (UC Davis) and LBL scientists (TOPS)
 - Algorithm description
 - ✓ Padé approximation for nonlinear terms
 - ✓ NEP becomes rational eigenvalue problems (REP)
 - ✓ Solve linearized REP
 - Advantage
 - ✓ Many existing algorithms for linear eigenvalue problems (LEP)
 - ✓ The size of LEP is only slightly larger than that of NEP
 - ✓ Much faster overall execution time in preliminary testing

Parallel Adaptive Refinement for Time-Domain Finite-Element Simulation

P-refinement for Short-range Wakefield

ILC short-range wakefield simulation

- ☐ Beam size ~ 300 micron
- Beam pipe radius: 39 mm
- Estimated > 100 million tetrahedral elements just for coupler!

- ☐ Inside window: p > 0
- ☐ Outside window: p = 0
- □ Significantly reduces execution time and memory usage

Snapshots of fields in wakefield calculation

- □ 800 micron beam size
- ☐ 400 micron edge length
- □ 13 million elements
- □ 5 windows in the run
- □ 1/10th of execution time
- □ 1/10th of memory usesciDAC

h-refinement for Short-range Wakefield

h-refined moving window

- -Refined mesh only around moving beam, thereby
- -reducing computational resources by orders of magnitude

Ref: X. Luo. M. Shephard, L.-Q. Lee, C. Ng, L. Ge, "Tracking Adaptive Mesh Refinement in 3D Curved Domains for Large-Scale Higher-Order Finite-Element Simulations", Best Meshing Technical Poster Award at the 17th International Meshing Roundtable, Pittsburgh, Oct. 12-15, 2008.

Solution Transfer between Different Meshes

- □ Discretized electromagnetic fields need to be transferred between different unstructured meshes (h-refinement, mesh-based multi-level preconditioner)
- ☐ A new projection method is discovered:

$$(\mathbf{M} + \alpha \mathbf{K}) \mathbf{x}^b = \left(\overrightarrow{\mathbf{N}}_j^b, \varepsilon \sum_i x_i^a \overrightarrow{\mathbf{N}}_i^a \right) + \alpha \left(\nabla \times \overrightarrow{\mathbf{N}}_j^b, \frac{1}{\mu} \sum_i x_i^a \nabla \times \overrightarrow{\mathbf{N}}_i^a \right)$$
where $\mathbf{M}_{ij} = \left(\varepsilon \overrightarrow{\mathbf{N}}_i, \overrightarrow{\mathbf{N}}_j \right)$ and $\mathbf{K}_{ij} = \left(\frac{1}{\mu} \nabla \times \overrightarrow{\mathbf{N}}_i, \nabla \times \overrightarrow{\mathbf{N}}_j \right)$

- Balance errors of both E and B
- Keep the quality of the solution

Mesh Curving Correction

Regions with invalidly curved elements

The same region after mesh curving correction

- RPI scientists create a tool
- Corrected mesh cures
 numerical instability in T3P
- Reduces T3P simulation time drastically
- More in Mark Shephard's presentation later

Also See: Presentation of Walter Polansky, "Scientific Discovery Through Advanced Computing and the Path Toward Computing at Extreme Scale", 2008

Dynamic Load Balancing for PIC Electromagnetic Simulation

Causal Adaptive p-refinement for PIC3P

Blue: 0th order Green: 1st order

Red: 2nd order

Restrict calculations onto causal domain:

0th order means no field calculations...

But particles don't notice any difference!

PIC Domain now significant part of total computational domain:

Need a good particle-field load balancing scheme

New Load Balancing Method

Requirements:

- Strong scalability (same problem runs faster with more CPUs)
- Weak scalability (can solve larger problem with more CPUs)
- Should work near optimal for any particle distribution
- Small overhead for typical cases

Proposed Solution (implementing now):

- Partition particles (and fields) geometrically (RCB)
- Every CPU owns a compact sub-bunch of particles

- Every CPU needs fields in particle region
- Every CPU knows whom to get the fields from (and send current to)
- <u>Some-to-some</u> communication (instead of some-to-one-to-all)
- Re-partitioning after every few steps to keep comm. volume low

Parallel Visualization

- □ SLAC was not funded with parallel visualization through SAP activity
- □ Parallel visualization is essential to accelerator modeling (25GB per mode for cryomodule, 5.5TB data for 40ns)
- Mesh and mode readers for Paraview (a parallel viz toolset) have been implemented

New Collaboration Opportunities

- □ Including CAD and mesh smoothing in shape optimization and uncertainty quantification
- Including CAD into mesh curving tool
- Multiphysics and multiscale simulation
 - Anisotropic mesh
- □ Performance optimization and improvement
- Memory-usage scalability of all the computational components in FEM simulation

Thank You

